IT门户, 中国互联网人工智能物联网行业资讯平台--公众IT
新闻来源:公众IT 原创整理       发布时间:2023/8/26       共计:4553 浏览

本文目录

边缘计算是什么?

2019年8月15日消息,知名创投调研机构CB Insights撰文详述了边缘计算的发展和应用前景。文章称,云计算已经不足以即时处理和分析由物联网设备、联网汽车和其他数字平台生成或即将生成的数据,这个时候边缘计算能够派上用场。该技术拥有着应用于诸多行业领域和发挥巨大作用的潜力。

以下是文章主要内容:

有时更快的数据处理是一种奢侈——有时它生死攸关。

例如,自动驾驶汽车本质上是一台装有轮子的高性能计算机,它通过大量的传感器来收集数据。为了使得这些车辆能够安全可靠地运行,它们需要立即对周围的环境做出反应。处理速度的任何延迟都有可能是致命的。虽然联网设备的数据处理现在主要是在云端进行的,但在中央服务器之间来回传送数据可能需要几秒钟的时间。这一时间跨度太长了。

边缘计算则让自动驾驶汽车更快速地处理数据成为可能。这种技术使得联网设备能够处理在“边缘”形成的数据,这里的“边缘”是指位于设备内部或者与设备本身要近得多的地方。

据估计,到2020年,每人每天平均将产生1.5GB的数据量。随着越来越多的设备连接到互联网并生成数据,云计算可能无法完全处理这些数据——尤其是在某些需要非常快速地处理数据的使用场景当中。

边缘计算是云计算以外的另一种可选解决方案,未来它的应用范围很有可能将远不止是无人驾驶汽车。

包括亚马逊、微软和谷歌在内的一些科技巨头都在探索“边缘计算”技术,这可能会引发下一场大规模的计算竞赛。虽然亚马逊云服务Amazon Web Services(AWS)在公共云领域仍然占据主导地位,但谁将成为这个新兴的边缘计算领域的领导者仍有待观察。

在本文中,我们将深入探讨什么是边缘计算,与该技术相关的优势,以及它在各行各业中的应用。

一个充满变化的计算领域

在了解边缘计算之前,我们必须先来看看它的前身——云计算——是如何为遍布全球的物联网(IoT)设备铺平道路的。

云计算 赋能 互联世界

从可穿戴设备到联网厨房电器,联网设备可以说无处不在。据估计,到2019年,全球物联网市场规模将超过1.7万亿美元,较2013年的4860亿美元增长逾两倍。

因此,云计算——许多智能设备连接到互联网来运作的过程——已经成为一种越来越主流的趋势。

云计算使得公司能够在自己的物理硬件之外,通过远程服务器网络(俗称“云”)存储和处理数据(以及其他的计算任务)。

例如,你可以选择使用苹果的iCloud云服务来备份你的智能手机,然后你可以通过另一个联网设备(比如你的台式电脑)检索智能手机里的数据,方法是登录你的账户连接到云。你的信息不再受到智能手机或台式机的内部硬盘容量的限制。

这只是众多云计算用例之一。另一个例子是通过Web端或移动浏览器来访问各种完整的应用程序。由于云计算越来越受欢迎,它吸引了亚马逊谷歌、微软和IBM等大型科技公司入局。据私有云管理公司RightScale于2018年进行的一项调查显示,在主要的公共云提供商当中,亚马逊AWS和微软Azure分列第一和第二。

图示:越来越多的企业在公共云上运行应用程序

但是集中式云计算并不适合所有的应用程序和用例。边缘计算则能够在传统云基础设施可能难以解决的领域提供解决方案。

向边缘计算的转变

在我们到处充斥着数据的未来,将有数十亿部设备连接到互联网,因此更快更可靠的数据处理将变得至关重要。

近年来,云计算的整合和集中化性质被证明具有成本效益和灵活性,但物联网和移动计算的兴起给网络带宽带来了不小的压力。

最终,并不是所有的智能设备都需要利用云计算来运行。在某些情况下,这种数据的往返传输能够——也应该——避免。

由此,边缘计算应运而生。

根据CB Insights的市场规模量化工具,到2022年,全球边缘计算市场规模预计将达到67.2亿美元。虽然这是一个新兴领域,但在云计算覆盖的一些领域,边缘计算的运行效率可能要更高。

边缘计算使得数据能够在最近端(如电动机、泵、发电机或其他的传感器)进行处理,减少在云端之间来回传输数据的需要。

市场研究公司IDC称,边缘计算被描述为“微型数据中心的网状网络,在本地处理或存储关键数据,并将所有接收到的数据推送到中央数据中心或云存储库,其覆盖范围不到100平方英尺”。

例如,一列火车可能包含可以立即提供其发动机状态信息的传感器。在边缘计算中,传感器数据不需要传输到火车上或者云端的数据中心,来查看是否有什么东西影响了发动机的运转。

本地化数据处理和存储对计算网络的压力更小。当发送到云的数据变少时,发生延迟的可能性——云端与物联网设备之间的交互导致的数据处理延迟——就会降低。

这也让基于边缘计算技术的硬件承担了更多的任务,它们包含用于收集数据的传感器和用于处理联网设备中的数据的CPU或GPU。

随着边缘计算的兴起,理解边缘设备所涉及的另一项技术也很重要,它就是雾计算。

边缘计算具体是指在网络的“边缘”处或附近进行的计算过程,而雾计算则是指边缘设备和云端之间的网络连接。

换句话说,雾计算使得云更接近于网络的边缘;因此,根据OpenFog的说法,“雾计算总是使用边缘计算,而不是边缘计算总是使用雾计算。”

说回我们的火车场景:传感器能够收集数据,但不能立即就数据采取行动。例如,如果一名火车工程师想要了解火车车轮和刹车是如何运行的,他可以使用历史累计的传感器数据来预测零部件是否需要维修。

在这种情况中,数据处理使用边缘计算,但它并不总是即时进行的(与确定引擎状态不同)。而使用雾计算,短期分析可以在给定的时间点实现,而不需要完全返回到中央云。

图示:云计算、雾计算与边缘计算

因此,要记住的是,虽然边缘计算给云计算带来补充,并且与雾计算一起非常紧密地运作,但它绝不是二者的替代者。

边缘计算 的优势

虽然边缘计算是一个新兴的领域,但是它拥有一些显而易见的优点,包括:

·实时或更快速的数据处理和分析:数据处理更接近数据来源,而不是在外部数据中心或云端进行,因此可以减少迟延时间。

·较低的成本:企业在本地设备的数据管理解决方案上的花费比在云和数据中心网络上的花费要少。

·网络流量较少:随着物联网设备数量的增加,数据生成继续以创纪录的速度增加。因此,网络带宽变得更加有限,让云端不堪重负,造成更大的数据瓶颈。

·更高的应用程序运行效率:随着滞后减少,应用程序能够以更快的速度更高效地运行。

削弱云端的角色也会降低发生单点故障的可能性。

例如,如果一家公司使用中央云来存储它的数据,云一旦宕机,那么数据将无法访问,直至问题得到修复——公司可能因而蒙受严重的业务损失。

2016年,Salesforce网站的北美14站点(又名NA14)宕机超过24个小时。客户无法访问用户数据,从电话号码到电子邮件等等,业务运营遭受严重的破坏。

此后,Salesforce将它的物联网云转移到亚马逊的AWS上,但是这次宕机事件凸显了仅仅依赖云的一大弊病。

减少对云的依赖也意味着某些设备可以稳定地离线运行。这在互联网连接受限的地区尤其能够派上用场——无论是在严重缺乏网络服务的特定地区,还是油田等通常无法访问的偏远地区。

边缘计算的另一个关键优势与安全性和合规性有关。随着政府越来越关注企业如何利用消费者的数据,这一点尤为重要。

欧盟(EU)最近实施的《通用数据保护条例》(GDPR)就是一例。该条例旨在保护个人可识别信息免遭数据滥用。

由于边缘设备能够在收集和本地处理数据,数据不必传输到云端。因此,敏感信息不需要经由网络,这样要是云遭到网络攻击,影响也不会那么严重。

边缘计算还能够让新兴联网设备和旧式的“遗留”设备之间实现互通。它将旧式系统使用的通信协议“转换成现代联网设备能够理解的语言”。这意味着传统工业设备可以无缝且高效地连接到现代的物联网平台。

边缘计算发展现状

今天,边缘计算市场仍然处于初期发展阶段。但随着越来越多的设备连网,它似乎备受关注。

主宰云计算市场的那些公司(亚马逊、谷歌和微软)正在成为边缘计算领域的领先者。

去年,亚马逊携AWS Greengrass进军边缘计算领域,走在了行业的前面。该服务将AWS扩展到设备上,这样它们就可以“在本地处理它们所生成的数据,同时仍然可以使用云来进行管理、数据分析和持久的存储”。

微软在这一领域也有一些大动作。该公司计划在未来4年在物联网领域投入50亿美元,其中包括边缘计算项目。

微软发布了它的Azure IoT Edge解决方案,该方案“将云分析扩展到边缘设备”,支持离线使用。该公司还希望聚焦于边缘的人工智能应用。

谷歌也不甘示弱。它在本月早些时候宣布了两款新产品,意在帮助改善边缘联网设备的开发。它们分别是硬件芯片Edge TPU和软件堆栈Cloud IoT Edge。

谷歌表示,“Cloud IoT Edge将谷歌云强大的数据处理和机器学习功能扩展到数十亿台边缘设备,比如机器人手臂、风力涡轮机和石油钻塔,这样它们就能够对来自其传感器的数据进行实时操作,并在本地进行结果预测。”

然而,有意涉足该领域的并不只是这三大科技巨头。

随着联网设备越来越多地涌现,新兴生态系统中的许多玩家都正在开发软件和技术来帮助边缘计算实现腾飞。

在接下来的四年里,惠普企业将在边缘计算领域投资40亿美元。该公司的Edgeline Converged Edge Systems系统的目标客户是那些希望获得数据中心级计算能力,且通常在边远地区运营的工业合作伙伴。

它的系统承诺在不依赖于将数据发送到云或数据中心的情况下,为工业运营(比如石油钻井平台、工厂或铜矿)提供来自联网设备的洞见。

在新兴的边缘计算领域,其他主要的竞争者包括Scale Computing、Vertiv、华为、富士通和诺基亚等。

人工智能芯片制造商英伟达于2017年推出了Jetson TX2,这是一个面向边缘设备的人工智能计算平台。它的前身是Jetson TX1,它号称要“重新定义将高级AI从云端扩展到边缘的可能性”。

许多著名的公司也在投资布局边缘计算,包括通用电气、英特尔、戴尔、IBM、思科、惠普企业、微软、SAP SE和AT&T。

例如,在私募市场上,戴尔和英特尔均投资了为工商业物联网应用提供边缘智能的Foghorn公司。戴尔还参与了物联网边缘平台IOTech的种子轮融资。

上面提到的许多公司,包括思科、戴尔和微软,也已经联合起来组成了OpenFog联盟。该组织的目标是标准化这项技术的应用。

边缘计算在各行各业的应用

随着传感器价格和计算成本的持续下降,更多的“东西”将被连接到互联网。

随着更多的联网设备变得可用,边缘计算将在各行各业中得到越来越多的应用,尤其是在云计算效率低下的一些领域。

我们已经开始看到该技术在多个不同的行业领域产生影响。

“当我们把云的威力下沉到设备(即边缘)时,我们可带来实时地响应、分析和行动的能力,尤其是在网络条件有限或者缺乏网络的地区……它还处于初期发展阶段,但我们正开始看到这些新功能能够应用于解决全球范围的一些重大挑战。”——微软首席技术官凯文 · 斯科特(Kevin Scott)

从自动驾驶汽车到农业,以下几个行业将会从边缘计算的潜力中获益。

交通运输

边缘计算技术最显而易见的潜在应用之一是交通运输——更具体地说,是无人驾驶汽车。

自动驾驶汽车装备了各种各样的传感器,从摄像头到雷达到激光系统,来帮助车辆运行。

如前所述,这些自动驾驶汽车可以利用边缘计算,通过这些传感器在离车辆更近的地方处理数据,进而尽可能地减少系统在驾驶过程中的响应时间。虽然无人驾驶汽车还不是主流趋势,但公司们正在未雨绸缪。

今年早些时候,汽车边缘计算联盟(AECC)宣布将启动以联网汽车解决方案为重点的项目。

“联网汽车正迅速地从豪华车型和高端品牌扩张到大批量的中端车型。汽车行业将很快达到一个临界点,届时汽车所产生的数据量将超过现有的云、计算和通信基础设施资源。”——AECC主席兼总裁村田兼一(Kenichi Murata)

该联盟的成员包括DENSO Corporation、丰田汽车、AT&T、爱立信、英特尔等公司。

不过,不仅仅是自动驾驶汽车会产生大量的数据并需要实时处理。飞机、火车和其他的交通工具也是如此——不管它们有没有人类驾驶。

例如,飞机制造商庞巴迪(Bombardier)的C系列飞机就装备了大量的传感器来迅速检测发动机的性能问题。在12小时的飞行中,飞机产生了多达844 TB的数据。边缘计算支持对数据进行实时处理,因此该公司能够主动处理引擎问题。

医疗保健

如今,人们越来越喜欢佩戴健身追踪设备、血糖监测仪、智能手表和其他监测健康状况的可穿戴设备。

但是,要真正地从所收集的海量数据中获益,实时分析可能是必不可少的——许多的可穿戴设备直接连接到云上,但也有其他的一些设备支持离线运行。

一些可穿戴健康监控器可以在不连接云的情况下本地分析脉搏数据或睡眠模式。然后,医生可以当场对病人进行评估,并就病人的健康状况提供即时反馈。

但在医疗保健领域,边缘计算的潜力远不局限于可穿戴设备。

不妨想想,快速的数据处理能够给远程患者监控、住院患者护理以及医院和诊所的医疗管理带来多大的好处。

医生和临床医生将能够为患者提供更快、更好的护理,同时患者所生成的健康数据也多了一层安全保护。医院病床平均有20个以上的联网设备,会产生大量的数据。这些数据的处理将直接发生在更靠近边缘的地方,而不是将保密数据发送到云端,因此能够避免数据被不当访问的风险。

如前所述,本地化数据处理意味着大范围的云端或网络故障不会影响业务运转。即使云操作中断,这些医院的传感器也能独立地正常运行。

制造业

智能制造有望从现代工厂大量部署的传感器中获得洞见。

由于能够减少滞后,边缘计算可能会使得制造流程能够更快速地做出响应和变动,能够实时地应用数据分析得出的洞见和实时行动。这可能包括在机器过热之前将其关闭。

一家工厂可以使用两个机器人来完成同样的任务,两个机器人装有传感器,并连接到一个边缘设备上。边缘设备可以通过运行一个机器学习模型来预测其中一个机器人是否会操作失败。

如果边缘设备断定机器人很可能会出现故障,它就会触发行动来阻止或减慢机器人的运转。这会使得工厂能够实时地评估潜在的故障。

如果机器人能够自己处理数据,它们也可能变得更加自给自足和反应灵敏。

边缘计算应该支持更快地从大数据中更多的洞见,以及支持将更多的机器学习技术应用到业务运营中。

最终目标是,挖掘实时产生的海量数据的巨大价值,防止安全隐患,并减少工厂车间机器运转中断的情况。

农业和智能农场

边缘计算非常适合应用于农业,因为农场经常处于偏远的位置和恶劣的环境中,可能存在带宽和网络连接方面的问题。

现在,想要改善网络连接的智能农场需要在昂贵的光纤、微波连接或者拥有一颗全天候运行的卫星上进行投资;而边缘计算则是一种合适的、具有成本效益的替代方案。

智能农场可以使用边缘计算来监测温度和设备性能,以及自动让各种设备(比如过热的泵)减缓运转或者关闭。

能源和电网控制

边缘计算或许在整个能源行业都尤其有效,尤其是在石油和天然气设施的安全监测方面。

例如,压力和湿度传感器应当受到严密监控,不能在连接性上出差错,尤其是考虑到这些传感器大多位于偏远地区。如果出现异常情况——比如油管过热——却没有被及时注意到,那就可能会发生灾难性的爆炸。

边缘计算的另一个好处是能够实时检测设备故障。通过电网控制,传感器可以监控从电动汽车到风力发电厂的一切设施所产生的能源,有助于相应作出决策来降低成本和提高能源生产效率。

其他行业领域的应用

其他可以利用边缘计算技术的行业包括金融业和零售业。这两个行业都使用大型的客户和后端数据集来提供从选股信息到店内服装摆放的各种信息,可以从减少对云计算的依赖中获益。

零售可以使用边缘计算应用程序来增强顾客体验。如今,许多零售商都在致力于改善店内体验,优化数据收集和分析的方式对它们而言绝对很有意义——尤其是考虑到许多零售商已经在尝试使用联网的智能显示屏。

此外,很多人使用店内平板电脑所生成的销售点数据,这些数据会被传输到云端或数据中心。借助边缘计算,数据可以在本地进行分析,从而减少敏感数据泄漏的风险。

总结

从可穿戴设备到汽车再到机器人,物联网设备正呈现出越来越强劲的发展势头。

随着我们朝着更加互联的生态系统迈进,数据生成将继续飞速增加,尤其是在5G技术取得腾飞,进一步加快网络连接以后。虽然中央云或数据中心传统上一直是数据管理、处理和存储的首选,但这两种方案都存在局限性。边缘计算可以充当替代解决方案,但由于该技术仍处于起步阶段,因此还很难预料其未来的发展。

设备能力方面的挑战——包括开发能够处理云端分流的计算任务的软件和硬件的能力——可能会出现。能否教会机器在能够在边缘执行的计算任务和需要云端执行的计算任务之间切换,也是一个挑战。

即便如此,随着边缘计算更多地被采用,企业将有更多的机会在各个领域测试和部署这种技术。

有些用例可能比其他用例更能证明边缘计算的价值,但整体来看,该技术对我们整个互联生态系统的潜在影响则可能是翻天覆地的。

原文链接:https://blog.csdn.net/hello_zybwl/article/details/89219832

"

如何理解物联网?

物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与因特网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。

物联网这一概念提出已有20多年,但受全球各国重视是2008年和2009年这两年,各国纷纷推出物联网相关政策,我国也开启了物联网发展里程碑的年份,列为国家五大新兴战略性产业之一。经过10年发展,物联网已不再是高高在上的概念,在云+AI等技术加持下,让物联网得到了广泛应用,产业发展迅猛,也迎来了黄金发展时代。

运营商、半导体厂商、通信设备、云服务商和应用端等形成物联网产业链,而NB-IoT和LoRa等LPWA低功耗广域网通信技术,解决物联网大规模部署连接等需求,继而使得物联网在工业、零售、物流和交通等垂直领域得到广泛应用。

在产业链积极推动下,物联网连接规模成倍速度增长,LPWAN连接的复合年增长率为109%。此外物联网高级顾问杨剑勇指出,5G技术部署,也将把物联网带上更高的层次,也让万物互联成为可能,其中运营商是万物互联积极推动者,全球运营商纷纷转型寄望于在大连接时代,不再局限做一个管道提供者,希望能抢夺物联网应用端市场,例如面向工业、教育、医疗、车联网和智慧家庭等应用场景寻求机遇。

物联网在移动监测、智能可穿戴、POS机、气象、医疗和能源等行业用途很大,而且是实现设备联网不可或缺的产品,不少相关的.top域名都被注册。

物联网发展现状及未来趋势?

物联网目前发展的现状仍然是行业发展的早期,未来市场发展空间非常大,潜力也很大。

互联网现在还处于行业的朝阳发展阶段,行业配套的各产业链还不完善,技术发展也处于早期状态,仍然需要时间发展和成熟。物联网的发展趋势是向生活生产的各个方不断普及,同时还会跟大数据智能化深入融合,最终向万物互联的方向发展。因此物联网未来的发展潜力和空间非常广阔,拓展的领域也会越来越多。

物联网为什么很少人学?

第一个原因:大家比较难懂

“物联网”概念的问世,打破了之前大家的传统思维。过去的思路一直是将物理基础设施和IT基础设施分开:一方面是机场、公路、建筑物。而另一方面是数据中心,个人电脑、宽带等。

而在物联网时代,钢筋混凝土、电缆将与芯片、宽带整合为统一的基础设施,在此意义上,基础设施更像是一块新的地球工地,世界的运转就在它上面进行,其中包括经济管理、生产运行、社会管理乃至个人生活。包括经济管理、生产运行、社会管理乃至个人生活的方方面面,相对来说还是比较复杂的。

物联网对很多人而言,是一个比较难懂的领域,所以难免会有不看好的情况。

第二个原因:大家没有看到它的前瞻性

物联网其实不是玩概念骗补贴的噱头,也不是科技大鳄的专属游戏,它就在我们的眼前、手下,正在真真切切的发展。数据显示,2012-2016年中国物联网行业持续稳定增长,年均复合增长率达到了25.8%,2017年中国物联网市场规模达到11500亿元,增长率为24.0%。

而在近几年,随着中国物联网政策支持力度不断加大,技术创新成果接连涌现,各领域应用持续深化,产业规模保持快速增长,物联网的发展前景可谓一篇光明。5G时代的到来,也让物联网成为了未来必然的趋势。

很多人并没有用长远的眼光来看待物联网,看不到它的未来广阔的发展空间,所以对它不看好。

第三个原因:专业太范,学而不精

物联网工程专业涉及到的知识体系比较庞大,不仅涉及到设备、网络等知识,而且与大数据、人工智能等技术的关系也比较密切,所以物联网工程专业的学习压力相对比较大的,学习起来也有一定的难度,容易学而不精。

个人认为,这一点应该是知乎上普遍对互联网工程不看好最关键的原因,容易“学而不精”的东西,一般人都会让人觉得略为鸡肋。

不过,话说回来,这也要见仁见智,看自己个人的学习能力。如果在掌握相关知识基础上,再深入到行业中去实践,还是能有所作为的。别的不说,至少比别人更具竞争力,比如海尔就是物联网行业中的佼佼者。

下一个风口是物联网吗,普通人怎么做物联网生意?

物联网会是下一个风口。

因为5G来了。

目前,5G已经正式开始商用,虽然5G的基站还没全部建设完成,但一线城市购买了5G手机的人早已用上了。5G是为万物互联设计的,5G 带来的是更快的速率、更低的功耗、更短的延迟、更强的稳定性、能支持更多用户。这些特点,令5G成为物联网起飞的催化剂。

5G 时代定义了以下三大应用场景:

eMBB:增强移动宽带,顾名思义是针对的是大流量移动宽带业务;

URLLC:超高可靠超低时延通信,例如无人驾驶等业务(3G 响应为 500ms,4G 为 50ms,5G 要求 0.5ms);

mMTC:大连接物联网,针对大规模物联网业务。

其中mMTC,就能为物联网提供巨大的网络容量。

当前中国的物联网市场主要依赖2G技术,中国移动的物联网就主要以2G网络支撑,这被称为窄带物联网(NB-IoT),这与其所拥有的覆盖最完善的2G网络有关,也与当前的这些物联网应用主要以低成本、低速率数据需求等有关。而当前的4G流量价格较为昂贵,物联网应用上无法大规模展开。5G 商用则解决了物联网的瓶颈。

不过,即使是诸多因素限制,也掩盖不了物联网目前巨大的发展潜力。

据美国市场研究公司Gartner预测,到2020年,全球物联网设备将达260亿台,市场规模将达1.9万亿美元。而麦肯锡的预测则是到2025年,市场规模将达到11.1万亿美元(相当于60万亿人民币)。

现在物联网虽还未完全普及,但值此风口之际,很多企业已经抢滩物联网细分市场。比如小米在紧密布局智能家居,还有阿里巴巴、百度、美国微软、谷歌等也将目光转向了物联网行业,例如微软计划在四年投入50万亿元用于物联网技术的开发,阿里巴巴也宣布在五年内连接100亿物联网设备。

可想而知,5G普及之后,物联网市场的蛋糕有多大。

一切都准备好了,风口即将到来。但,风口是不等人的。

世界各国在发展物联网行业上有什么差别?

关于各国的物联网差别:我说说美国、欧洲、日本、韩国和我国。

美国是老牌物联网国家,在基础设施、技术水平和产业链上都趋于完善。他们提出智慧地球的理念,把感应器嵌入电网、铁路、桥梁、公路、建筑等各种物体中。侧重用物联网推动能源、宽带与医疗的技术应用。

欧洲: 欧盟致力于研究微电子学、能源、隐私、AI等方面的应用。

日本: 用物联网推动电子病历、远程医疗、远程教育等方面。

韩国: 把物联网应用于通讯融合。重点在于通讯技术。

中国: 随着5G时代的开启,我国的物联网致力于各方面的领先。

lora物联网发展的目的和意义?

现在处于一个物联网时代,物理网技术正在快速发展当中。随着物联网的快速发展,无线通信技术也得以需要进行迈步发展。如今涌现出了许多低带宽、能耗低、距离远、能做到大量连接的以物联网应用而设计的低功耗广域网(LPWAN)。其中技术则是从中脱颖而出,并得到物联网界的认可。

在2013年的8月,公司向业界正式发布了一种新型的使用1GHz以下的超长距低功耗数据传输技术(Long Range,简称LoRa)的芯片。其接受灵敏度达到了惊人的-148dbm,与业界其他先进水平的sub-GHz芯片相比,最高的接收灵敏度改善了20db以上,这确保了网络连接可靠性。

它使用线性调频扩频调制技术,即保持了像FSK(频移键控)调制相同的低功耗特性,又明显地增加了通信距离,同时提高了网络效率并消除了干扰,即不同扩频序列的终端即使使用相同的频率同时发送也不会相互干扰,因此在此基础上研发的集中器/网关(Concentrator/Gaway)能够并行接收并处理多个节点的数据,大大扩展了系统容量。

线性扩频已在军事和空间通信领域使用了数十年,因为其可以实现长通信距离和干扰的鲁棒性,而LoRa是第一个用于商业用途的低成本实现。随着LoRa的引入,嵌入式无线通信领域的局面发生了彻底的改变。这一技术改变了以往关于传输距离与功耗的折衷考虑方式,提供一种简单的能实现远距离、长电池寿命、大容量、低成本的通讯系统。

LoRa主要在全球免费频段运行(即非授权频段),包括433、868、915 MHz等。LoRa网络主要由终端(内置LoRa模块)、网关(或称基站)、服务器和云四部分组成,应用数据可双向传输。

LoRa作为目前最有发展前景的低功耗广域通信技术,已经被运用在个各行各业中。LoRa使用线性调频扩频调制技术,保持了低功耗的同时,明显增加了通信距离和网络效率,并消除了干扰,达到即使使用相同频率同时发送也不会产生相互干扰。在LoRa基础上研发出的网关可以并行接收、处理多个节点数据,拓展了系统容量。

LoRa数传终端-L2S-B 是和远智能在多年专业研制生产电力仪表的基础上,基于LoRa射频芯片设计制造的通用通讯交互设备。产品集成了两路工业标准485,将有线设备需要传输的数据通过RS485通讯线传输到该设备中,再将数据通过无线方式进行传输,支持多种协议,实现有线设备与无线设备之间的数据传输。本产品可广泛的应用于物联网、集中抄表、工业控制等方向。

LoRa凭借其成本低,分布广,耐用性强,技术成熟的特点使其已经广泛的应用于各个物联网行业,优良的性能和灵活的组网形式越来越多的应用于各行各业中,前景是广阔的。LoRa数传终端IOT-L2S-B是基于LoRa射频芯片设计制造的通用通讯交互设备,可广泛的应用于物联网、集中抄表、工业控制等方向。而其QoS不高,数据传输量小,为节约成本、大量连接,而对QoS要求不高的情况下,LoRa无疑是最佳的选择。存在延迟的特点使得在某些行业中与有机互补。

发展现状

作为支持物联网低功耗广域网络开放标准LoRaWAN?的全球企业协会LoRa联盟?携手16家联盟成员在Lora联盟展台进行了集中展示。LoRa联盟作为一个开放的非营性组织,自2015年成立以来,已成为技术领域内规模最大、发展最快的联盟之一。联盟成员密切合作、分享经验,以推动LoRaWAN成为领先的开放式全球标准,实现安全、运营商级的物联网LPWAN连接。由于具备了解决广泛的物联网应用的技术灵活性,包括静态和移动设备,及确保互操作性的认证程序,LoRaWAN协议已经被全球的主要移动网络运营商部署,在100多个国家可供连接,并仍在持续扩展。

目前,有83个运营商(LoRa),世界上LoRa网络覆盖超过了一百个国家。其中,包括电信运营商,网络运营商和私人独立组织私化使用的网络。网络已覆盖美国,加拿大,巴西,中国,俄罗斯,印度,马来西亚,新加坡等地区。在中国,我们看到主要的垂直市场,如智能城市,智能家居,智能农业,用劳拉消防智能化技术,许多垂直解决方案已投放市场,为客户提供。

阿里支持,LoRa应用加速落地

在今年三月的时候,阿里宣布全面进军物联网赛道,并在云、管、边、端等具体领域展开布局。在管道侧,阿里云IoT事业部市场总监王云词介绍:阿里云的强项是在云计算和整个基础设施平台上面,阿里云并不是一个半导体厂商或者是硬件厂商,并不擅长在单点的应用上面去做很多的垂直应用开发。而阿里云结合自身优势开发的阿里云Link WAN core物联网核心网的管理平台,可以很好地支持LoRa的协议。

中山中专物联网专业前景如何?

1、物联网技术市场需求旺盛 物联网技术是连接万物,实现信息的互联共享。以智能家居为例,未来家居将实现智能化、自动化管理,更好地服务于人类生活,这也需要物联网技术的支持。而根据市场研究机构IDATE发布的报告,到2025年,全球物联网市场将有望达到1.6万亿美元,市场需求将持续旺盛。

2、物联网技术行业发展潜力巨大 在工业4.0的大趋势下,物联网技术将对制造业产生重大影响。根据德勤发布的《2019年全球制造业调查》显示,60%的受访者将物联网技术列为未来制造业发展的核心能力。

版权说明:
本网站凡注明“公众IT 原创”的皆为本站原创文章,如需转载请注明出处!
本网转载皆注明出处,遵循行业规范,如发现作品内容版权或其它问题的,请与我们联系处理!
您可以扫描右侧微信二维码联系我们。
网站首页 关于我们 联系我们 合作联系 会员说明 新闻投稿 隐私协议 网站地图