本文目录
本文目录
物联网(IoT)作为一种新型技术,既迷人又模糊,要从物联网中获得真正的商业价值,关键在于体系结构所有元素之间的有效交互,以便能够更快地部署应用程序,并以闪电般的速度处理和分析数据,以便尽快做出明智的决策。
一、物联网组成
物联网架构可以由四个部分组成:
1、东西(设备):这些被定义为唯一可识别的节点,主要是传感器,它们通过网络进行通信,无需人工干预。
2、网关:它们充当东西和云之间的中介,以提供所需的网络连接、安全性和可管理性。
3、网络基础设施:它由路由器、聚合器、网关、中继器和其他控制数据流的设备组成。
4、云基础架构:云基础架构包含连网的大型虚拟化服务器和存储池。
二、趋势
下一代趋势,即社交网络、大数据、云计算和移动性,已经使许多事情成为可能。除此之外,全球趋势和事件的融合正在推动和促进当今的技术进步和模式创新,包括:
▲关键垂直市场的效率和成本降低举措
▲政府对这项新技术的投资激励措施
▲降低智能设备的制造成本
▲降低网络连接成本
▲更高效的有线和无线通信
▲扩展且价格合理的移动网络
物联网正在为当前和新兴市场中的企业创造新机遇并提供竞争优势。它触及一切——不仅仅是数据,还涉及如何、何时、何地以及为何收集数据。创造物联网的技术不仅仅改变了互联网,而且也改变了与互联网相连的东西——网络边缘的设备和网关,它们现在可以请求服务或启动操作而无需进行人为干预。因为数据的生成和分析对物联网至关重要,所以必须在数据的整个生命周期中对其进行有效保护。管理此级别的数据非常复杂,因为数据将跨越许多具有不同策略和意图的管理边界。
考虑到构成物联网生态系统的各种技术和物理组件,将物联网视为一个系统体系是完全合理的。构建一个对企业来说具有商业价值的物联网系统往往是一项复杂任务,因为企业架构师致力于设计集成解决方案,其中包括边缘设备、应用程序、传输、协议和分析功能,这些内容构成了一个功能齐全的物联网系统。
三、平台
在未来四年内,用于保护物联网设备和系统的安全解决方案支出将增加五倍以上。最佳平台为物联网开发解决方案需要对系统中的每个部分以及整个系统进行前所未有的协作、协调和连接。所有设备必须协同工作并与所有其他设备集成,同时,所有设备必须与连接的系统和基础架构进行无缝通信和交互。
最佳的物联网平台可以:
▲获取和管理数据,以创建基于标准、可扩展且安全的平台。
▲集成和保护数据以降低成本和复杂性,同时保护您的投资。
▲分析数据并从数据中提取商业价值,然后对其采取行动。
完整的物联网系统由哪些组成.中琛物联网平台表示从物联网的整体架构我们可以看出物物相连是基于感知层收集到的、网络层传输的、平台层挖掘利用的信息,然后再把特定信息反馈给基层物体完成指定命令以此实现智能化。而要让这四个层面连接起来形成一个整体,我们就需要用到物联网卡了。
物联网大致可以分为以下四个层面,即:感知层、网络层、平台层以及应用层。
一、感知识别层
感知层是物联网整体架构的基础,是物理世界和信息世界融合的重要一环。在感知层,我们可以通过传感器感知物体本身以及周围的信息,让物体也具备了“开口说话,发布信息”的能力,比如声音传感器、压力传感器、光强传感器等。感知层负责为物联网采集和获取信息。
二、网络构建层
感知到的信息如何传递出去呢?这就要提到网络层了,网络层在整个物联网架构中起到承上启下的作用,它负责向上层传输感知信息和向下层传输命令。网络层把感知层采集而来的信息传输给物联云平台,也负责把物联云平台下达的指令传输给应用层,具有纽带作用。网络层主要是通过物联网、互联网以及移动通信网络等传输海量信息。
三、平台管理层
平台层是物联网整体架构的核心,它主要解决数据如何存储、如何检索、如何使用以及数据安全与隐私保护等问题。平台管理层负责把感知层收集到的信息通过大数据、云计算等技术进行有效地整合和利用,为我们应用到具体领域提供科学有效的指导。
四、综合应用层
物联网最终是要应用到各个行业中去,物体传输的信息在物联云平台处理后,我们会把挖掘出来的有价值的信息应用到实际生活和工作中,比如智慧物流、智慧医疗、食品安全、智慧园区等。物联网应用现阶段正处在快速增长期,随着技术的突破和需求的增加,物联网应用的领域会越来越多。
从物联网的整体架构我们可以看出物物相连是基于感知层收集到的、网络层传输的、平台层挖掘利用的信息,然后再把特定信息反馈给基层物体完成指定命令以此实现智能化。
物联网从架构上面可以分为感知层、网络层和应用层,
(1)感知层:负责信息采集和物物之间的信息传输,信息采集的技术包括传感器、条码和二维码、 RFID射频技术、音视频等多媒体信息,信息传输包括远近距离数据传输技术、自组织组网技术、协同信息处理技术、信息采集中间件技术等传感器网络。感知层是实现物联网全面感知的核心能力,是物联网中包括关键技术、标准化方面、产业化方面亟待突破的部分,关键在于具备更精确、更全面的感知能力,并解决低功耗、小型化和低成本的问题。
(2)网络层:是利用无线和有线网络对采集的数据进行编码、认证和传输,广泛覆盖的移动通信网络是实现物联网的基础设施,是物联网三层中标准化程度昀高、产业化能力昀强、昀成熟的部分,关键在于为物联网应用特征进行优化和改进,形成协同感知的网络。
(3)应用层:提供丰富的基于物联网的应用,是物联网发展的根本目标,将物联网技术与行业信息化需求相结合,实现广泛智能化应用的解决方案集,关键在于行业融合、信息资源的开发利用、低成本高质量的解决方案、信息安全的保障以及有效的商业模式的开发。
物联网网络层的拓扑结构一般有星型、树型、总线型和环型等。
各种拓扑结构的特点: (1)星型结构 星型结构的特点是结构简单。 这种拓扑结构的互联可靠性差,中央站的故障可能导致系统瘫痪,通信线路不能共用,线路的利用率较低。
(2)树型拓扑结构的优点是,简单、维护方便。缺点是共享能力差。
(3)总线型拓扑结构的主要优点是:它属于分布式控制;节点的增删和位置的变动比较容易,变动时不用停止网络的正常运行,就像闭路电视增加新用户一样方便;节点的接口采用无源线路,可靠性高。其主要缺点是:每一节点必须能接收任何节点发来的信息;信号在网络上有碰撞问题;信息延迟不确定;电气信号通路多,干扰较大;对信号的质量要求较高。
(4)环型结构 环型拓扑结构形成一个简单的闭合环路, 环型网络的特点是分布式控制,即每个节点在环路中的作用是相同的,控制传送过程可以从一个节点转移到另一个节点,而不是集中于一个节点。如果环路中断,整个系统不能工作,因而可靠性较差。
不包括控制层。
物联网无线接入技术种类众多,包括Zigbee、WiFi、蓝牙等短距离通信技术和LoRa、SigFox、eMTC、NB-IoT等无线通信技术。
NB-IoT是指窄带物联网技术,是一种低功耗(LPWA)网络技术标准,用于连接使用无线蜂窝网络的各种智能传感器和设备,是一种广泛应用的新兴技术。
NB-IoT技术可以理解为是LTE技术的“简化版”,NB-IoT网络是基于现有LTE网络进行改造得来的。LTE网络为“人”服务,为手机服务,为消费互联网服务;而NB-IoT网络为“物”服务,为物联网终端服务,为产业互联网(物联网)服务。
NB-IoT使用License频段,可直接部署于GSM网络、UMTS网络或LTE网络,与现有网络共存,以降低部署成本、实现平滑升级。